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Abstract. Parameter fitting in metabolic models can be challenging
because experimental data are often noisy and sparse. In Bayesian esti-
mation, prior knowledge about model parameters would be weighted
against knowledge from data fitting. Since error bars and prior widths are
often unknown, we explore a more flexible way of regulating this trade-
off. We propose an evolutionary multi-objective approach to parameter
estimation to find compromises between parameters matching the prior
(prior loss) and yielding good data fits (likelihood loss). Our metabolic
model describes an ensemble of steady states with correlated variation
of all model variables. In the estimation, reaction elasticities are the
parameters and the covariances of measurable state variables serve as
measurement data. To evaluate our approach, we conduct two tests with
artificial data and a known ground truth. We first consider a simple
metabolic pathway with 3 reactions and 4 metabolites, where the corre-
lated variation of variables can be understood intuitively. The second test
involves a more complex real-world metabolic model of Escherichia coli
bacteria with 62 metabolites, 57 reactions, and 234 elasticity coefficients
to be fitted, where the results are almost impossible to guess even for
domain experts. In both cases, the proposed method yields satisfactory
results. This paves the way to studying biological objective functions
unrelated to model fitting, including homeostasis or information trans-
mission across metabolic networks.

Keywords: Bacteria · Covariance matrix · Metabolic model ·
Multi-objective optimization · Parameter estimation · Structural
Kinetic Model

1 Introduction

Cell metabolism consists of a network of enzyme-catalyzed chemical reactions
showing a complex dynamics. Metabolic models are based on reaction networks
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whose nodes and edges carry different types of variables – metabolite concen-
trations, enzyme levels, and metabolic fluxes – which depend on each other in
complex ways. Physical laws, including mass balance relations and kinetic rate
laws, govern the dynamics of this high-dimensional dynamical system. Experi-
mental “omics” data, assigning values to model variables in different states of the
cell, are usually scarce and noisy and often do not capture the absolute values
of variables, rather measuring their relative variation between different states of
the cell. This, together with limited data about model parameters, makes model
parameterization a challenging task.

The Structural Kinetic Models (SKM) approach [17] is a way of formulating
metabolic models that removes some of these difficulties. It describes metabolic
systems in two steps, by first defining a steady reference state – a plausible set
of all model variables, describing a viable state of the cell – and then mod-
eling dynamic variations around this state with dynamics described as linear
approximations and with reaction elasticities as parameters to be sampled or
fitted. The reaction elasticities describe how individual reaction rates respond to
changes in metabolite concentrations. A main advantage of the SKM formulation
over traditional metabolic models is that it already starts from a steady state
with plausible metabolic fluxes, which allows for constructing realistic models
without the need for a brute-force parameter estimation.

Here we ask how the covariations of metabolic variables are shaped by net-
work structure and details of enzyme kinetics and regulation. How much informa-
tion is contained in observed correlations [16]? Focusing on covariations instead
of a single steady state has different reasons: they are not only easier to mea-
sure in “omics experiments”, but they also tell us more clearly how variables
are dynamically related. Moreover, variance and covariances of variables may be
important for cellular regulation, homeostasis, or adapted responses to changes
in the cells’ environment.

While covariation happens dynamically as cell variables fluctuate in time, we
can also think of covariation across an ensemble of steady states, that is, states in
which all variables remain constant in time, but differ between model instances,
for example depending on cells’ environments. To model such an ensemble of
states, we may assume that some “external” variables are chosen from random
distributions while all the remaining “internal” variables assume their steady-
state values given those variables. The resulting variations and covariations of all
variables are shaped by the structure of the metabolic network (which enforces,
for example, covarying fluxes along linear metabolic pathways), but also by the
reaction kinetics.

Here we study how SKM models can be fitted to covariance data. Given a
network structure and a known reference state, the free parameters of an SKM
are its reaction elasticities: in order to find their values, however, it is not enough
to fit experimental data – in our case, the elements of its covariance matrix. It
is also necessary to consider that elasticities should not differ too strongly from
theoretical expectations, either because some of their values are approximately
known from literature or because deviating too far from certain values might
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have costly side-effects for the cell. The two requirements naturally lead to a
multi-objective problem, where each candidate solution will represent a trade-
off between the two conflicting aims.

Below we propose a novel multi-objective evolutionary approach to parameter
estimation for SKMs. In our model, we describe how covariances of model vari-
ables depend on reaction elasticities. Then we turn this question around: from a
given covariance matrix of metabolite (or metabolite and enzyme) concentration
data we infer the elasticities. This yields an estimate of the Jacobian matrix, an
estimation problem that has been recently tackled in [10] using another method-
ology. In our method, the parameter estimation task is framed as an optimization
problem with two conflicting aims: finding reaction elasticities that, on the one
hand, fit a given covariance matrix of state variables and, on the other hand, are
not too different from the theoretical expectations about approximately known
or physiologically optimal parameters of the cell.

We test the approach on metabolic models following the SKM framework,
first with a simple case study using a 3-reaction pathway (with 2 external and
2 internal metabolites); and then with a larger, more realistic network model
describing the core metabolism of Escherichia coli bacteria. For simplicity, the
elasticities with respect to external metabolites are assumed to be fixed and
given. The results show that the proposed multi-objective optimization approach
is able to find satisfying Pareto fronts for both cases. As expected, the candidate
solutions match the ground truth when full data are available and deviate from
the ground truth as more and more data are masked.

2 Background

This section briefly summarizes the methods used in this work: metabolic models,
SKMs, and multi-objective evolutionary optimization.

2.1 Cell Metabolic Models

A metabolic model describes biochemical reactions that occur within a cell,
enabling the cell to maintain its biological functions. Its nodes represent chem-
ical species called metabolites and its edges represent the chemical reactions
themselves. Here is an example of a 3-reaction linear pathway that will later
serve as a toy model for the experimental evaluation:

Aext
R1−−→ B

R2−−→ C
R3−−→ Dext

Aext and Dext are external metabolites (with concentrations treated as model
parameters). The concentrations of internal metabolites B and C and the reac-
tion rates v1, v2, and v3 are state variables. Each reaction follows an unknown
rate law of the form vi = ei fi(c). The metabolites consumed and produced in
each reaction are described by a stoichiometric matrix N whose rows represent
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metabolites and whose columns correspond to reactions. Each matrix element
represents the stoichiometric coefficient between a metabolite and a reaction,
with negative elements for reaction substrates and positive elements for reaction
products. Considering the mass balance for each metabolite, we can relate the
temporal variation of internal metabolite concentrations (in the vector c) to the
reaction rate v:

dc
dt

= N · v ⇒ d
dt

(
cB
cC

)
=

(
1 −1 0
0 1 −1

)
·
⎛
⎝v1

v2
v3

⎞
⎠ . (1)

We now consider a steady state in which reaction fluxes and metabolite
concentrations have reference values v∗ and c∗, satisfying the mass conservation
equation N · v∗ = 0 and the rate laws v∗ = v(e, c∗) To describe how small
changes in metabolite concentrations influence reaction rates near this steady
state, we use elasticity coefficients. The reaction elasticity Eij quantifies how
sensitive a reaction rate vi is to a small change in the concentration of metabolite
cj . Based on a given rate law vi = vi(ei, c), an elasticity is defined as:

Eij =
∂vi
∂cj

|c∗,v∗ (2)

Applied to a reference state, it tells us how much the reaction rate vi changes
when cj is slightly perturbed, assuming that all other system variables remain
unchanged. Using these coefficients, we can approximate the direct effect of
changes in metabolite concentrations δc on the reaction rates δv:

δv ≈ E · δc.

The elasticity matrix E contains the reaction elasticities for all the reactions
and internal metabolites in the system.

2.2 Linearized Metabolic Model

In the Structural Kinetic Modeling (SKM) approach, we construct a linearized
metabolic model in which unknown reaction elasticities are formally treated as
model parameters [17]. The unscaled elasticity matrix can be written as

E = diag(v∗) E diag(c∗)−1

where E is the scaled version of the elasticity matrix. The matrix E is sparse:
it contains non-zero entries only for metabolites directly involved in reactions.
The dimensionless coefficient Eij , for the ith reaction, measures the normalized
degree of saturation of the catalyzing enzyme with respect to the jth metabolite.
It has a known sign (1 for substrates and -1 for products), and its absolute value
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ranges between 0 (when the enzyme is fully saturated by the metabolite) and
a maximum given by the absolute stoichiometric coefficient |nji| (for a fully
unsaturated enzyme). We can therefore write the matrix as

E = −N� ◦ A (3)

with a matrix of saturation values aij in the range between 0 and 1. Here,
◦ denotes the component-wise multiplication (Hadamard product) of the two
matrices. Below, for the optimization, we will represent this matrix by a vector
a containing all the relevant (potentially non-zero) elements of the matrix. A
given vector a of saturation values will, therefore, define a parameterized model.

To examine the dynamics of our metabolic model around a reference state, we
study the Jacobian matrix, which characterizes the sensitivity of each metabolite
to changes in its neighbor metabolites. The Jacobian determines how fluctuations
in one metabolite can propagate across the network. For a given steady reference
state, it is given by

J = N E (4)

where N is the (known) stoichiometric matrix and E is the unscaled elasticity
matrix. By simulating the resulting metabolic dynamics, one can infer the overall
behavior of the cell under different conditions and explore how the network
responds to changes, despite uncertainties in the underlying kinetic details.

The SKM approach uses matrices N and E, as well as fixed vectors v∗ and
c∗, to represent the metabolism dynamic. While the stoichiometric matrix N
represents the well-known topology of the metabolic network and plausible ref-
erence states can be guessed, the vector a, defining the scaled elasticity matrix
E, is typically unknown. In SKM, one may circumvent this problem by sampling
this vector at random [8,12,17]; here, instead, we will fit it to data.

2.3 Correlated Variation of Metabolic Variables

To model variability or uncertainties of metabolic variables, we describe them as
random variables. Given random distributions of the external variables (external
metabolite concentrations and enzyme levels), we obtain distributions of all the
state variables (internal metabolite concentrations and fluxes). The model vari-
ables are described on a logarithmic scale and their variations are assumed to be
small, allowing us to describe the system’s dynamics in a linear approximation,
using notions from Metabolic Control Analysis (MCA) [9,14]. Our aim is to
compute a global linear response of all internal variables of the system (internal
metabolite concentrations c and reaction fluxes v) to external variables (enzyme
levels and external metabolite concentrations) that serve as the sources of per-
turbations. This global linear response is captured by the unscaled response
matrix [9]
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Rp =
(
Rc

p

Rv
p

)
where

Rc
p = −LJR

−1NR · Ep

Rv
p = E · Rc

p + Ep.

In the formula., the reduced stoichiometric matrix NR consists of a set of
linearly independent rows of N, and the link matrix is defined to obtain N again
via N = LNR [14]. The reduced Jacobian is given by JR = NR E L.

From now on we assume that all variables are described on a logarithmic
scale. In analogy to the scaled elasticities, we define a scaled version Rp of the
response matrix Rp, which is used in this case. Moreover, rather than considering
specific perturbations, we consider random perturbation and treat all variables as
random variables [7,11,18]. On a logarithmic scale, all variables are assumed to
follow normal distributions around the given reference state. The (logarithmic)
external variables (in a random vector P) are assumed to be independent, with
a predefined, diagonal covariance matrix Cov(P). Due to the linearized model,
also the resulting (logarithmic) state variables will follow normal distributions.
Altogether, we obtain a random vector Z comprising all the (logarithmic) exter-
nal and internal variables, following a joint multivariate normal distribution with
covariance matrix [11]

Cov(Z) =
(

Ip
Rp

)
· Cov(P) ·

(
Ip
Rp

)T

(5)

where Ip is the identity matrix with a size equal to the number of external
variables in p. Equation (5) is a compact representation of how uncertainty in
the network’s external environment leads to uncertainty in all variables. The
covariance matrix Cov(Z) depends on the covariance matrix Cov(P) of external
variables and on the scaled response matrix Rp, which itself depends on the
stoichiometric matrix N and the vector of saturation levels a.

2.4 Inferring Reaction Elasticities from Covariances in Model
Variables

For a model with given reference state, stoichiometric matrix, and random distri-
butions of the external variables, our aim is to estimate the unknown saturation
levels in a based on data by assuming two different objectives. The first objective
is to fit experimental data by minimizing the negative log likelihood between the
model output and experimental data – in our specific case, a covariance matrix
derived from experimental data in different steady states. Since in practice, data
are limited, we assume that only some of the covariances are available for the
estimation. The second objective reflects our prior knowledge about plausible
saturation values in a, described by a prior distribution. For the prior, we assume
a Gaussian distribution with given mean vector and standard deviations. The
mean values represent our best guess for biologically reasonable levels of satu-
ration. This second objective, effectively, penalizes deviations of the saturation
values from their prior means.
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Thus, our two-objective approach balances two key considerations: (1) the
likelihood that the model accurately reflects experimental data, and (2) the prior
knowledge or assumptions about plausible saturation values based on established
biochemical principles. These objectives can be in conflict, as measurement data
may suggest values that deviate significantly from prior expectations. This trade-
off between empirical alignment and adherence to prior knowledge represents a
central challenge in metabolic modeling.

2.5 Multi-objective Evolutionary Optimization

Machine learning and optimization algorithms have been applied to metabolic
network models [2]. Among these methods, Evolutionary Algorithms (EAs) have
emerged as a powerful class of optimization techniques [1]. These approaches also
allow for multi-objective optimization and that the cell does not have a single
stable state but rather a set of preferred modes, each optimizing, to a greater or
lesser extent, key characteristics of homeostasis.

When dealing with multiple conflicting objectives, classic optimization tech-
niques might employ a composite objective function defined as a weighted sum of
the single objective functions. The idea behind multi-objective optimization [4],
instead, is to not assign weights to the functions at all but to explore the space
of trade-offs between the conflicting objectives. The result is not just one single
best solution, but a set of candidate solutions that are not Pareto-dominated
by others. Being population-based, EAs are well suited to multi-objective opti-
mization and currently represent the state of the art in the domain [15]. In
this work, we chose to employ the established Non-Sorting Genetic Algorithm
II (NSGA-II) [5]: while not particularly recent, it is still extremely competitive
in optimization problems with up to 3 objectives and has implementations in
multiple programming languages, from C++ to Python.

3 An Approach for Model Fitting by Multi-objective
Optimization

Given the two conflicting objectives of parameter estimation in metabolic mod-
els described above, we propose a novel approach based on multi-objective evo-
lutionary optimization to find a set of good compromise solutions to be later
analyzed for their biological relevance. A scheme of our estimation problem with
the two objective functions is presented in Fig. 1.

3.1 Structure of a Candidate Solution

In our optimization problem, an individual represents a set of reaction elastici-
ties, that capture the local sensitivities of reaction fluxes to changes in metabolite
concentrations. The elasticity matrix is encoded by a saturation level vector a,
whose elements are real-valued numbers in [0, 1]. An individual a thus represents
a configuration of the SKM model from which we compute the model’s covariance



330 A. Lequertier et al.

Fig. 1. Estimation problem for metabolic models. The aim is to estimate reaction
elasticities, using covariances of state variables as data. A model instance is defined
by a stoichiometric matrix N, a known reference state (v∗ and c∗), and unknown
reaction elasticities Eij , parameterized by saturation values in a vector a. A model
instance yields an input-output relationship described by a response coefficient matrix
R. Based on an assumed random distribution of external variables (“environment”),
the model generates a covariance matrix of all the model variables. In our estimation
procedure for saturation values, we consider two objectives. The first loss function
f1 compares the covariance results between our model and experimental data. The
second loss function f2 compares the elasticity matrix to a prior. Solutions are found
by an evolutionary algorithm in which each individual represents a vector of saturation
values, encoding an instance of our response model.

matrix, Cov(Zmodel). During our estimation procedure, this covariance matrix
is then scored by one of our two objective functions.

Given the structure of a candidate solution – a simple numerical vector – the
operators that will be used during the evolutionary optimization are a 1-point
crossover and a polynomial mutation [6].

3.2 Objective Functions

Our first objective concerns the similarity between a covariance matrix Σmodel =
Cov(Zmodel) obtained from a model and an “experimentally measured” covari-
ance matrix Σexp = Cov(Zexp). The likelihood function (assuming a normal
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distribution for “measurement errors” of covariance values with a constant stan-
dard deviation σ), is given by

L(amodel|Σexp) =
∏
ij

1√
2πσ2

exp

(
− (Σmodel

ij (amodel) − Σexp
ij )2

2σ2

)
.

In our optimization, we consider the negative log-likelihood and ignore con-
stant terms. Our resulting first objective function f1, called “likelihood loss”, can
be written as follows:

f1(amodel) =
∑
ij

Iij · (Σmodel
ij (amodel) − Σexp

ij )2 (6)

with Iij ∈ {0, 1}: 1 if a data point is accessible, 0 otherwise, reflecting the impos-
sibility of observing specific matrix elements from biological data. A maximal
likelihood corresponds to a minimal loss.

For the second objective, we score each possible vector a by a prior density
Pprior(a), an uncorrelated multivariate normal distribution with mean vector μ
and standard deviations in a vector σ. With this prior, a saturation value vector
a can be scored by how much it deviates from the prior mean. In analogy to our
loss function f1, we define our second objective function f2, called “prior loss”:

f2(amodel) =
∑
k

(amodel
k − μk)2

σ2
k

. (7)

The function represents the negative log-prior, where constant terms are
again ignored.

4 Experimental Evaluation

To validate our approach, we ran computer experiments on two different models.
We first considered a simple 3-reaction pathway for which the results are easy
to analyze. Then we considered the E. coli core model [13], a standard network
model of Escherichia coli bacteria consisting of 62 metabolites and 57 reactions,
and with a total of 234 reaction elasticities to be estimated.

In both cases, the artificial data used in the estimation were generated using
a “true” instance of our model, taken to be our ground truth. The true saturation
values were chosen randomly within biologically plausible ranges. In the models
to be fitted, we kept all model parameters exactly the same except for the satura-
tion values in a to be estimated. The prior mean values for all saturation values
were set to 1/2, describing a case in which enzymes are half-saturated with all
the metabolites. Biochemically, this corresponds to metabolite concentrations
matching their respective Michaelis-Mention constants KM. All prior standard
deviations were chosen to be equal, and also all data error bars (for covariance
values) were chosen to be equal: the two numerical values do not play a role,
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Fig. 2. Metabolic pathway of 3 reactions. Variability in external variables (enzyme
levels and concentrations of external metabolites Aext and Dext) causes variability in
internal variables (reaction fluxes and concentrations of internal metabolites B and C).

because their only effect is a linear scaling of the two objective functions, which
will not change the shape of our Pareto front.

All the necessary code for reproducing the experiments is available in a public
GitHub repository1; the scripts are implemented in Python 3, resorting to the
pymoo library [3] for NSGA-II.

4.1 Simple 3-Reaction Pathway Model

As a first test for of our optimization algorithm, we studied a hypothetical 3-
reaction linear pathway (Fig. 2). The internal variables are the fluxes v1, v2 and
v3 and the concentrations cB and cC, while the external variables (and there-
fore sources of uncertainty) are the external metabolite concentrations cAext and
cDext , as well as the enzyme activities e1, e2 and e3. The elasticity matrix E
(for internal metabolites B and C) contains only two columns, and only 4 of
its elements are non-zero. Therefore, a candidate solution is represented by a
saturation vector of length 4, amodel ∈ [0, 1]4, parameterizing the reaction elas-
ticities with respect to internal metabolites. This minimal setup enables a rapid
and easily interpretable analysis, which allowed us to identify and understand
challenges during the implementation.

After a few trial runs, we ran NSGA-II with the following hyperparameters:
population size μe = 1000, offspring size λe = 1000, tournament selection with
τ = 2, probability of crossover pc = 0.9, probability of polynomial mutation [6]
pm = 0.9, and a stop condition after Gmax = 100 generations. The experiment
took about 20min to run on a server with 72 Intel Xeon w9-3475X CPUs and
128 GB of RAM, with one evaluation taking around 0.02 s on average.

The results are shown in Fig. 3 (left). The plots show how the algorithm pro-
gressively identifies high-quality, non-dominated points in each iteration, ulti-
mately converging toward a satisfactory front. Since the objective functions are
positive with optimal (minimal) values of 0, the fact that the front almost touches
both axes indicates a good performance. The two red dots at the ends of the front
represent the known extreme points; although they are shown here for reference,
they were not used in computing the front.

1 https://github.com/albertotonda/evolutionary-optimization-cell-models.

https://github.com/albertotonda/evolutionary-optimization-cell-models
https://github.com/albertotonda/evolutionary-optimization-cell-models
https://github.com/albertotonda/evolutionary-optimization-cell-models
https://github.com/albertotonda/evolutionary-optimization-cell-models
https://github.com/albertotonda/evolutionary-optimization-cell-models
https://github.com/albertotonda/evolutionary-optimization-cell-models
https://github.com/albertotonda/evolutionary-optimization-cell-models
https://github.com/albertotonda/evolutionary-optimization-cell-models
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Fig. 3. Population of NSGA-II at selected generations for the 3-reactions pathway
model (see Fig. 2) and the E. coli core model. Both objectives (prior and likelihood loss
term) are minimized. Left: Experiment on the 3-reaction pathway. Right: Experiment
on the E. coli core model. (Color figure online)

Our objective f1 compares a covariance matrix produced by a candidate solu-
tion to our “true” the covariance matrix, replacing here covariances from biolog-
ical data. In real biological experiments, only some of the cellular variables can
be measured. We studied the effects of such incomplete data by considering a
number of scenarios in which only some of the covariance data were used to
compute the likelihood loss f1. Figure 4 shows optimization results for different
scenarios with such incomplete data. To indicate the varying quality of the esti-
mation, the distance of each parameter set from the ground truth (the a vector
of the “true model”) is shown in color. The “true model” itself is represented by
the red dot on the top left. The red point on the bottom right represents an
individual whose values match the prior mean.

In Scenario 1 (top left), the whole covariance matrix is considered (a 10 × 10
matrix – but the symmetric shape of the matrix allows us to reduce it to 55
elements). Our Pareto front connects these two points. Distances between the
individuals and the “true” saturation values are coherent compared with the val-
ues of the first objective function along the Pareto front. The individual that
is the closest to the top-left red point has the lowest loss value, which sug-
gests the uniqueness of the solution in this case. In Scenario 2 (top right), only
the covariances of metabolites and enzymes (but not the fluxes) are considered,
reducing to 13 the number of elements compared. Distances from the ground
truth remain well sorted along the Pareto front. With more iterations, the front
would probably extend to the two red points. In Scenario 3 (bottom left), only
covariances between metabolites are considered, reducing to 7 the number of ele-
ments compared. The distances from the ground truth (in color) remain globally
coherent, but do not fully match the first objective function. This means that
an estimation based on metabolite covariances still works, but not fully reliably.
In Scenario 4 (bottom right), only the covariance between internal metabolites
was considered, reducing to 3 the number of elements compared. As expected,
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Fig. 4. Population of NSGA-II (last generation) after optimizing the 3-reaction path-
way using different estimation scenarios. Top left (Scenario 1): Loss function f1 based
on covariances between all model variables (enzyme levels, metabolite concentrations,
and fluxes). Top right (Scenario 2): f1 based on covariances of 3 enzyme levels and
4 metabolite concentrations. Bottom left (Scenario 3): f1 based on covariances of 4
metabolite concentrations. Bottom right (Scenario 4): f1 based on covariances of 2
internal metabolite concentrations. (Color figure online)

with 3 data points and 4 parameters to be estimated, the estimation problem is
ill-determined and the estimates along the entire front are partially shaped by
the prior.

4.2 Escherichia Coli core model

Our second computer experiment targets the E. coli core model [13], which con-
tains 62 metabolites, 57 reactions, and 234 considered reaction elasticities. A
candidate solution is now represented by a vector model ∈ [0, 1]234, again rep-
resenting enzyme saturation values encoding reaction elasticities. As the problem
is now more complex, a larger computational budget was allocated to NSGA-II,
with hyperparameters: μe = 1000, λe = 1000, τ = 2, pc = 0.9, pm = 0.9, and
Gmax = 1000 generations. The experiment took about 96 h to run on a server
with 72 Intel Xeon w9-3475X CPUs and 128 GB of RAM, with one evaluation
taking on average 0.34 s.
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Fig. 5. Pareto front at generation 1000 for the E. coli core model.

The results from the evolutionary run on the E. coli core model are presented
in Fig. 3 (right). Figure 5 shows the set of non-dominated points found at the last
generation, along with the two reference points for the known optimal solutions.
While the point at the bottom right represents the known prior mean, the point
at the top left represents the “true” vector a behind the artificial data, which
would not be accessible if the ground truth were not known. The results are
satisfying: like with the smaller test model, the Pareto front comes very close to
the optimal values of the single objectives.

5 Conclusions and Future Works

To explore how measured covariances in metabolite and enzyme data could be
used for parameter estimation, we proposed a framework for multi-objective
optimization in metabolic models. In our models, a know random distribution
of external metabolite and enzyme concentrations leads to a simple formula for
covariances between all model variables. We now used a given covariance matrix
to infer some model parameters (the enzyme saturation values with respect to
internal metabolites), assuming all other model parameters to be known.

In Bayesian estimation, a parameter set would be scored by its posterior
density, a product of likelihood and prior. Since the relative importance of these
terms may vary (depending on prior widths and data error bars), we treated
them here as separate objectives. Each point on the Pareto front represents
a model instance. Since the assumed “true” parameter set (our ground truth)
differs from the prior mean, there is a trade-off between the objectives, resulting
in an extended front that we recovered in our computer experiments. Points
from the two ends of the front represent, respectively, solutions that are well
supported by data (but with the risk of overfitting) versus more conservative
solutions that stay close to our prior expectation about model parameters. By
moving along the front, we can interpolate between these extremes and shift our
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focus of attention between prior and likelihood. This would not be possible in a
standard Bayesian estimation.

Each point of the front corresponds to a parametrization of the Jacobian
matrix which determines the metabolic system dynamics. Biochemically, the
inferred elasticities are important: they can tell us whether reactions are forward-
driven (insensitive to their product concentrations, which also makes them rel-
atively enzyme-efficient) or, in contrast, close to chemical equilibrium (sensitive
to substrate and product concentrations alike, which may imply a high enzyme
demand). In our model, thermodynamic driving forces may also be included
explicitly by using the Structural Thermokinetic Modeling variant of SKM [12].

In our optimization, we assumed that reference state and elasticities for
external metabolites were known, and estimated only the elasticities for inter-
nal metabolites. This could be generalized to fit other model details, including
reference fluxes or concentrations, thermodynamic forces, or the presence of reg-
ulatory arrows. Likewise, instead of covariances also other types of data could
be considered, such as time series or sets of different steady states. With only
minor modifications, the proposed framework can also be used to study biologi-
cal objectives, for example, trade-offs between dynamic robustness and enzyme
costs.
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